Non-classical orthogonality relations for big and little q-Jacobi polynomials

نویسندگان

  • Samuel G. Moreno
  • Esther M. García-Caballero
چکیده

Big q-Jacobi polynomials {Pn(·; a, b, c; q)}∞n=0 are classically defined for 0 < a < q −1, 0 < b < q−1 and c < 0. For the family of little q-Jacobi polynomials {pn(·; a, b|q)}∞n=0, classical considerations restrict the parameters imposing 0 < a < q−1 and b < q−1. In this work we extend both families in such a way that wider sets of parameters are allowed, and we establish orthogonality conditions for those cases for which Favard’s theorem does not work. As a by-product, we obtain similar results for the families of big and little q-Laguerre polynomials. c © 2009 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Limit Cases of Askey-wilson Polynomials

We show that limit transitions from Askey-Wilson polynomials to q-Racah, little and big q-Jacobi polynomials can be made rigorous on the level of their orthogonality measures in a suitable weak sense. This allows us to derive the orthogonality relations and norm evaluations for the q-Racah polynomials, little and big q-Jacobi polynomials by taking limits in the orthogonality relations and norm ...

متن کامل

On Bc Type Basic Hypergeometric Orthogonal Polynomials

Abstract. The five parameter family of multivariable Askey-Wilson polynomials is studied with four parameters generically complex. The multivariable Askey-Wilson polynomials form an orthogonal system with respect to an explicit (in general complex) measure. A partially discrete orthogonality measure is obtained by shifting the contour to the torus while picking up residues. A parameter domain i...

متن کامل

UvA - DARE ( Digital Academic Repository ) Multivariable big and little q - Jacobi polynomials

A four-parameter family of multivariable big q-Jacobi polynomials and a threeparameter family of multivariable little q-Jacobi polynomials are introduced. For both families, full orthogonality is proved with the help of a second-order q-difference operator which is diagonalized by the multivariable polynomials. A link is made between the orthogonality measures and R. Askey’s q-extensions of Sel...

متن کامل

decompositions , q = 0 limits , and p - adic interpretations of some q - hypergeometric orthogonal polynomials

For little q-Jacobi polynomials, q-Hahn polynomials and big q-Jacobi polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as decompositions into a lower triangular matrix times upper triangular matrix. We develop a general theory of such decompositions rela...

متن کامل

8 N ov 2 00 4 Lower - upper triangular decompositions , q = 0 limits , and p - adic interpretations of some q - hypergeometric orthogonal polynomials Tom

For little q-Jacobi polynomials, q-Hahn polynomials and big q-Jacobi polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as decompositions into a lower triangular matrix times upper triangular matrix. We develop a general theory of such decompositions rela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 162  شماره 

صفحات  -

تاریخ انتشار 2010